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Purpose of review

The aim of this article is to review opsoclonus, with

particular emphasis on its immunopathogenesis and

pathophysiology.

Recent findings

Infections (West Nile virus, Lyme disease), neoplasms

(non-Hodgkin’s lymphoma, renal adenocarcinoma), celiac

disease, and allogeneic hematopoietic stem cell

transplantation can cause opsoclonus. Newly identified

autoantibodies include antineuroleukin, antigliadin,

antiendomysial, and anti-CV2. Evidence suggests that the

autoantigens of opsoclonus reside in postsynaptic density,

or on the cell surface of neurons or neuroblastoma cells

(where they exert antiproliferative and proapoptotic effects).

Most patients, however, are seronegative for

autoantibodies. Cell-mediated immunity may also play a

role, with B and T-cell recruitment in the cerebrospinal fluid

linked to neurological signs. Rituximab, an anti-CD20

monoclonal antibody, seems efficacious as an adjunctive

therapy. Although changes in synaptic weighting of

saccadic burst neuron circuits in the brainstem have been

implicated, disinhibition of the fastigial nucleus in the

cerebellum, or damage to afferent projections to the fastigial

nucleus, is a more plausible pathophysiologic mechanism

which is supported by functional magnetic resonance

imaging findings in patients.

Summary

There is increasing recognition that both humoral and cell

mediated immune mechanisms are involved in the

pathogenesis of opsoclonus. Further studies are needed to

further elucidate its immunopathogenesis and

pathophysiology in order to develop novel and efficacious

therapy.
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Introduction
Opsoclonus is a dyskinesia consisting of involuntary,

arrhythmic, chaotic, multidirectional saccades, without

intersaccadic intervals [1–3]. The etiology of opsoclonus

is varied, and includes paraneoplastic, parainfectious,

toxic–metabolic, or idiopathic causes. Humoral and

cell mediated immune mechanisms have both been

implicated. Although a number of autoantibodies have

been detected, the majority of patients with opsoclonus

are seronegative for all known antineuronal antibodies.

Investigations are directed toward detecting any under-

lying tumors, and excluding other causes. This review

summarizes the clinical features, etiology, investiga-

tion, treatment, as well as the course and prognosis

of opsoclonus, with particular focus on recent advances

in our understanding of its immunopathogenesis and

pathophysiology.

Clinical features
Opsoclonus consists of involuntary, arrhythmic, chaotic,

multidirectional saccades, with horizontal, vertical, and

torsional components [1–3]. It is present during fixation,

smooth pursuit, convergence, and persists during sleep or

eyelid closure. Because of its large amplitude and high

frequency (10–15 Hz), it frequently causes visual blur

and oscillopsia (an illusion of movement of the seen

world). Opsoclonus differs from nystagmus in that the

phase that takes the eye off the target is always a saccade,

not a slow eye movement. In contrast to ocular flutter,

which consists of back-to-back saccades that are confined

to the horizontal plane, opsoclonus is multidirectional

[1–4]. Opsoclonus is often accompanied by myoclonic

jerks of the limbs and trunk, hence the term ‘opsoclonus–

myoclonus’ or ‘dancing eye and dancing feet syndrome’.

Cerebellar ataxia, postural tremor, encephalopathy, and

behavioral disturbances are also frequently associated.

Etiology
Opsoclonus can occur in many clinical settings (Table 1

[5–59]), including paraneoplastic syndromes, parainfec-

tious brainstem encephalitis, and toxic–metabolic states.
25

mailto:agnes.wong@utoronto.ca


26 Neuro-ophthalmology and neuro-otology

Table 1 Etiology of opsoclonus and ocular flutter

References

Paraneoplastic effect of neuroblastoma and
other neural crest tumors (in children)

[5,6]

Paraneoplastic effect of other tumors (in adults) [7–15]
Parainfectious encephalitis [1,16–27,28��,29]
Multiple sclerosis [4,30–32]
Meningitis [33]
Intracranial tumors [34]
Hydrocephalus [35]
Thalamic hemorrhage [36]
In association with systemic disease

AIDS [37,38,39��]
Celiac disease [40��]
Viral hepatitis [41]
Sarcoid [42]

Following allogeneic hematopoietic
stem cell transplantation

[43]

Hyperosmolar coma [44,45]
Toxins

Chlordecone [46]
Organophosphates [47]
Strychnine [48]
Thallium [49]
Toluene [50]

Side effects of drugs
Amitriptyline [51]
Cocaine [52]
Lithium [53,54]
Phenytoin with diazepam [55]
Phenelzine with imipramine [56]

As a complication of pregnancy [57]
As a transient phenomenon of normal infants [58,59]

Not all case reports have eye movement recordings.
In many cases, however, no obvious cause is found

(i.e. idiopathic opsoclonus). In paraneoplastic opsoclonus,

small cell lung, breast, and ovarian cancer are most

commonly encountered in adults [1,60], whereas more

than half of cases are associated with neuroblastoma in

children. Diseases that have recently been reported to

cause opsoclonus include infections such as West Nile

virus [29], streptococcal infection [28��], varicella-zoster

infection [25], and Lyme disease [27]; neoplasms such as

non-Hodgkin’s lymphoma [13], malignant melanoma

[14], and renal adenocarcinoma [15]; and celiac disease

[40��]. A case of opsoclonus following allogeneic hema-

topoietic stem cell transplantation has also been reported

[43].

Immunopathogenesis
Humoral and cell mediated immune mechanisms have

both been implicated in paraneoplastic and idiopathic

opsoclonus [61]. In support of a humoral immune mech-

anism, paraneoplastic opsoclonus has been associated

with a number of autoantibodies. They include anti-

Ri (ANNA-2) [62], anti-Yo (PCA-1) [63], anti-Hu

(ANNA-1) [64], anti-Ma1 [65], anti-Ma2 [3], anti-

amphiphysin [66,67], anti-CRMP-5/anti-CV2 [40��,68],

anti-Zic2 [69], and antineurofilaments [70]. New auto-

antibodies identified in two recent case reports include

antineuroleukin antibodies in two girls with poststrep-

tococcal opsoclonus–myoclonus syndrome [28��], as well
as antigliadin antibodies of immunoglobulin A subtype,

antiendomysial antibodies, and anti-CV2 antibodies in a

child with celiac disease [40��].

Because of the frequent reversibility of symptoms,

especially after immunotherapy, and the paucity of find-

ings on pathological examination, it has been suggested

that the putative autoantigens reside on the cell surface or

in the synapse, and that the antibodies cause transient

neuronal dysfunction rather than permanent neuronal

degeneration [67]. Recently, Blaes et al. [71��] detected

autoantibodies binding to cell surface of cerebellar gran-

ular neurons. In another study, Bataller et al. [69] probed a

brainstem cDNA library to isolate target neuronal anti-

gens by using sera of 21 patients with idiopathic or

paraneoplastic opsoclonus. They [69] found two groups

of autoantigens: (1) proteins of the postsynaptic density

(PSD), a complex of proteins associated with the gluta-

mate N-methyl-D-aspartate (NMDA) receptor that

includes membrane proteins (such as receptors, ion chan-

nels, and adhesion molecules) attached to a network of

intracellular scaffold, signaling and cytoskeletal proteins;

and (2) proteins with expression or function restricted to

neurons, including RNA or DNA-binding proteins and

zinc-finger proteins.

Despite progress in identifying autoantibodies, the

majority of patients with opsoclonus are seronegative for

all known antineuronal antibodies. In addition, there are

no definitive links between various autoantibodies and

neurological abnormalities [72]. These observations

suggest that a cell mediated immune mechanism may play

a role in the pathogenesis of opsoclonus. Three recent

studies lend further support to a cell mediated immune

mechanism. (1) Pranzatelli et al. [73] found that although

most children with opsoclonus have normal cell counts in

the cerebrospinal fluid (CSF), they have expansion of

CD19þ B-cell (up to 29%) and gD T-cell (up to 26%)

subsets with a reduced proportion of CD4þ T-cells and

reduced CD4/CD8 ratio. These abnormalities persist for

years after disease onset despite treatment, and they corre-

late with neurologic severity as well as disease duration.

(2) Opsoclonus responds to treatment with rituximab, an

anti-CD20 monoclonal antibody, with clinical improve-

ment correlating with B-cell reduction in the CSF

[74�,75��]. (3) van Toorn et al. [39��] reported an HIV-

infected child who developed opsoclonus–myoclonus

shortly after commencement of highly active antiretroviral

therapy, and postulated that T-cell recovery and recruit-

ment following rapid immune reconstitution may have

resulted in immune reconstitution-induced opsoclonus–

myoclonus.

Interestingly, the prognosis for survival of neuroblastoma

patients with opsoclonus is better than for those without

opsoclonus [76]. In addition, neuroblastoma has a high
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incidence of spontaneous regression. These observations,

together with the suspected autoimmune pathogenesis,

suggest that opsoclonus may represent an effective anti-

tumor immunity that protects against tumor growth and

dissemination. Recently, Korfei et al. [77��] demonstrated

that IgG autoantibodies from neuroblastoma patients

with opsoclonus, but not those from neuroblastoma

patients without opsoclonus, bind to surface autoantigens

on neuroblastoma cells, and that these autoantibodies

inhibit cell proliferation and induce apoptosis in neuro-

blastoma cells.

Pathophysiology
The pathophysiology of opsoclonus is uncertain. Burst

neurons in the paramedian pontine reticular formation

(PPRF) and rostral interstitial nucleus of Cajal (riMLF)

are responsible for generating the immediate premotor

command for saccades. Omnipause cells in the pontine

nucleus raphe interpositus (rip) normally inhibit these

burst neurons, preventing unwanted saccades. Thus,

damage to omnipause cells might cause opsoclonus

[78]. Lesions of omnipause cells, however, cause slowing

of saccades, not saccadic oscillations [79,80]. In addition,

on autopsy, no histopathologic changes in omnipause

cells were found in most patients with opsoclonus

[3,81].

Cerebellar dysfunction has also been invoked in the

pathogenesis of opsoclonus in view of damage to Purkinje

cells, granular cells and the dentate nuclei in patients

with opsoclonus [82–84]. These cerebellar changes also

occur, however, in patients with paraneoplastic cerebellar

degeneration who do not have opsoclonus. Moreover,

partial ablations of the cerebellar cortex [85] or cere-

bellectomy including the deep nuclei [85,86] have not

been observed to cause opsoclonus in monkeys. Inacti-

vation of the caudal fastigial nucleus of the cerebellum

produces saccadic overshoot dysmetria with intervals

between sequential saccades, not opsoclonus [87,88].

Currently, two hypothetical models seem plausible. One

hypothesis [89��] suggests that saccadic oscillations arise

because of the synaptic organization of burst neurons in

the brainstem, in which positive feedback loops and

postinhibitory rebound properties of burst neurons pre-

dispose to saccadic oscillations. Changes in the synaptic

weighting of saccadic burst neuron circuits in the brain-

stem due to disease may produce oscillations (such as

microflutter) whenever the omnipause cells are inhibited

[89��,90]. The amplitude of the saccadic oscillations

generated by this model, however, is much smaller

(10–20 times) than the large amplitude oscillations that

are typically seen in opsoclonus. In addition, the bio-

physical mechanism underlying the purported change in

synaptic organization of burst neurons is unclear, and

clinical correlation is lacking.
Another more plausible hypothesis [3] proposes that

disinhibition (not inactivation) of the fastigial nucleus

in the cerebellum causes opsoclonus. Malfunction of

Purkinje cells in the dorsal vermis or their inhibitory

projections to the fastigial nucleus may cause opsoclonus

by disinhibiting the fastigial nucleus [3]. Four lines of

evidence support this hypothesis. (1) Histopathological

examination of a patient with opsoclonus revealed

damage to afferent projections to the fastigial nucleus

[3]. (2) Long-term potentiation of slow inhibitory post-

synaptic current, but not excitatory postsynaptic current,

is abolished in mice lacking Nova-2, a neuronal-specific

RNA binding protein that is an autoimmune target in

patients with paraneoplastic opsoclonus [91��]. Nova-2

normally contributes to inhibitory synaptic transmission

or synaptic plasticity, or both. Defective Nova-2 may be

responsible for reduced inhibitory control (i.e. disinhibi-

tion) of movements seen in opsoclonus–myoclonus syn-

drome. (3) In two patients with opsoclonus, single photon

emission computed tomography identified the area of

dysfunction to the cerebellar vermis, where Purkinje cells

normally exert inhibitory control over the fastigial

nucleus [39��,92]. (4) Perhaps the most convincing evi-

dence comes from a functional magnetic resonance ima-

ging (MRI) study that demonstrated bilateral activation

(i.e. disinhibition) of the fastigial nucleus in two patients

with opsoclonus. Furthermore, this pattern of cerebellar

activation is not observed in healthy controls during high-

frequency saccades [93].

Investigation
A thorough diagnostic evaluation for the presence of tumor

is necessary for all patients with opsoclonus, after exclusion

of central nervous system pathology and lumbar puncture.

In most cases, brain MRI is normal, and CSF analysis may

show mild pleocytosis and protein elevation. At the pre-

sent time, commercial tests for antibodies are of limited

diagnostic value because most patients with opsoclonus

are seronegative for autoantibodies.

In children, a search for occult neuroblastoma is essential.

Investigations should include imaging of chest and

abdomen (computed tomography scan or MRI), urine

catecholamine measurements, including vanillyl mande-

lic acid and homovanillic acid, as well as 123I-metaiodo-

benzylguanidine scan [94]. When negative, the evalu-

ation should be repeated after several months [95].

In adults, initial investigations for paraneoplastic opso-

clonus should be directed at tumors associated with this

condition. They include high resolution computed tomo-

graphy of the chest and abdomen, as well as gynecolo-

gical examination and mammography in women [67].

When negative, whole body 18F-fluoro-2-deoxyglucose-

positron emission tomography scan should be considered

[96,97].
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Treatment
Treatment of the underlying process such as tumor or

encephalitis is the mainstay of management for opsoclo-

nus [67]. To date, however, no data are available from

prospective controlled trials with regard to treatment

strategies and their correlation with long-term outcome

in patients with opsoclonus.

In children, corticosteroids, intravenous immunoglobulin

(IVIG), and adrenocorticotropic hormone (ACTH) are

the most common immunomodulatory agents used for

paraneoplastic opsoclonus. In many centers, children are

treated with prednisone (2 mg/kg/day) and monthly IVIG

(2 g/kg at induction, followed by a monthly maintenance

dose of 1 g/kg [75��,98]). If symptoms improve, pre-

dnisone is slowly tapered starting at 2–3 months over a

9–12-month period. If relapse or exacerbation occurs

(not due to recurrence of neuroblastoma), the dosage of

prednisone, and sometimes IVIG, are increased. For symp-

toms that remain difficult to control despite the above

therapy, a low dose cyclophosphamide (1–5 mg/kg) is

often added. Currently, the Children’s Oncology Group

at the National Cancer Institute (NCI) of the USA is

conducting a randomized, multicenter clinical trial to

determine whether cyclophosphamide and prednisone

with or without IVIG is a reasonable baseline standard

therapy for pediatric patients with neuroblastoma-

associated opsoclonus–myoclonus–ataxia syndrome.

ACTH is also used in many centers for pediatric opso-

clonus–myoclonus syndrome [75��]. A 40-week protocol

has been used: H.P. Acthar Gel (80 IU/cm3; Questcor,

Union City, California, USA) is injected intramuscularly

at an initiation dose of 75 IU/m2 twice a day for one week,

daily for one week, every other day for 2 weeks, then

gradually dropping to 40 IU/m2 over 2 months, when the

rate of taper decelerates to 5 IU/m2 every month until a

final dose of 5 IU/m2 is reached [75��]. If relapse occurs,

the tapering is halted, and the previous dose that controls

the symptoms is resumed. Recently, Pranzatelli et al.
[99��] demonstrated that daily high-dose ACTH treat-

ment dramatically raises the concentration of cortisol in

CSF, but alternate day and low-dose ACTH do not. They

[99��] suggested that elevated level of cortisol in the brain

may make ACTH more efficacious than oral corticoster-

oids in inducing a neurologic remission. Because ACTH,

like corticosteroids, exerts many neurotropic [100] and

immunologic effects [61], however, the relative contri-

bution of elevated level of cortisol in the brain cortisol

remains uncertain. Prospective dose–response and time

course studies are needed to further clarify the thera-

peutic effects of ACTH.

Plasmapheresis may be useful in refractory cases that do

not respond to ACTH or corticosteroids. In a patient with

ganglioneuroblastoma and delayed, recurrent opsoclonus
9 years after completing treatment, combination therapy

with plasmapheresis and corticosteroids results in symp-

tom resolution for 3 years [101]. Rituximab (375 mg/m2 of

body surface area intravenously once weekly for four

consecutive weeks), an anti-CD20 monoclonal antibody,

has also recently been shown to be efficacious and safe as

adjunctive therapy [74�,75��,102,103].

In adult-onset idiopathic opsoclonus–myoclonus, cortico-

steroids or IVIG seem to accelerate recovery [67]. In

contrast to pediatric neuroblastoma-associated opsoclonus,

no clear advantage of immune therapy has been demon-

strated in adults with paraneoplastic opsoclonus [67].

Improvement following the administration of cortico-

steroids, cyclophosphamide, azathioprine, IVIG, plasma

exchange, or plasma filtration with a protein A column has

been described in single cases [104–108].

Symptomatic therapy of nystagmus and oscillopsia

includes the use of propranolol (40–80 mg orally three

times daily), nitrazepam (15–30 mg orally daily), baclo-

fen, clonazepam (0.5–2.0 mg orally three times daily),

and thiamine (200 mg intravenously) [109–111]. Myoclo-

nus can be treated with antiepileptic drugs.

Course and prognosis
In children, the course of opsoclonus–myoclonus is

characterized by multiple relapses, which require pro-

longed treatment, and significant developmental seque-

lae [112��]. Only a minority of children has a monophasic

course and a more benign prognosis [112��]. In children

with neuroblastoma and opsoclonus, the opsoclonus

usually resolves eventually with or without treatment.

Residual opsoclonus may reappear after apparent com-

plete resolution when medication is reduced, or during

intercurrent illnesses [113]. Developmental sequelae

are common, and include motor, speech, and language

deficits. Psychiatric symptoms, such as aggressive and

disruptive behavior, impulsivity, affective dysregulation,

irritability, cognitive impairment, poor attention, and

sleep disturbances may persist [114�]. Immunosuppressive

agents may improve behavioral symptoms and motor

functions; but psychotropic medications may be necessary

in selected children who have severe behavioral or sleep

disturbances [113]. Trazodone (3.0� 0.4 mg/kg/day), a

soporific serotonergic agent, was recently reported to be

effective in improving sleep and decreasing rage attacks,

and it is well tolerated, even in toddlers [115�].

In adults, the clinical course of idiopathic opsoclonus

is monophasic with good recovery in the majority of

patients; in older patients, however, relapses of opsoclo-

nus may occur and residual gait ataxia tends to persist.

Immunotherapy (corticosteroids or IVIG) seems to ac-

celerate recovery. In contrast, paraneoplastic opsoclonus

has a more severe course, despite treatment with
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corticosteroids or IVIG, and mortality rate is high in

patients whose tumors are not treated. Most patients

who undergo treatment for the underlying tumors have

complete or partial neurological recovery [67].

Conclusion
The exact immunopathogenesis of opsoclonus is uncer-

tain. There is increasing recognition, however, that both

humoral and cell mediated immune mechanisms are

involved. Although changes in the synaptic weighting

of saccadic burst neuron circuits in the brainstem may

produce saccadic oscillations, clinical correlation is lack-

ing. Further experiments, such as selective blockades

of individual channels or intracellular recordings, are

needed to investigate the biophysical characteristics of

burst neurons and the purported change in synaptic

organization. At the present time, disinhibition of the

fastigial nucleus in the cerebellum, or damage to afferent

projections to the fastigial nucleus, is a more plausible

pathophysiologic mechanism which is supported by a

degree of evidence, including functional MRI findings

in affected patients. Because previously normal individ-

uals are rapidly disabled neurologically by opsoclonus–

myoclonus syndrome, and because available treatments

are often less than satisfactory, a better understanding

of the immunopathogenesis and pathophysiology of

opsoclonus is essential to develop and identify novel

treatment modalities.
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